二极管激光腔衰荡光谱技术测量大气NO₂

胡仁志 王丹 谢品华12 陈浩 凌六一1.3

¹中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室,安徽 合肥 230031 ²中国科学技术大学环境科学与光电技术学院,安徽 合肥 230026 ³安徽理工大学电气与信息工程学院,安徽 淮南 232001

摘要 介绍了在409 nm 处采用二极管激光腔衰荡光谱(CRDS)技术探测大气中 NO₂的浓度(体积分数,下同)。通过调制 二极管激光器参数,优化其输出光谱,获得 NO₂的有效吸收截面。探讨水蒸气、臭氧及其他痕量气体可能引起的测量 干扰。时间分辨率为1s时,系统探测限为6.6×10⁻¹¹。考虑到 NO₂气体吸收截面和系统 R₄(衰荡腔长与腔内气体单次吸 收光程长的比值)的不确定性,该系统的测量误差为±4.5%(1*σ*)。在实验室条件下,该系统和非相干宽带腔增强(IBB-CEAS)系统同时测量 NO₂样气,将二者测量结果进行了对比,测量结果具有很好的一致性,线性拟合斜率为0.988±0.005, 相关性为0.99。同时该系统被应用于实际环境大气中 NO₂浓度的测量,测得 NO₂浓度在1×10⁻⁸~5×10⁻⁸范围内,平均浓 度为3.5×10⁻⁸。为了证实 CRDS系统的测量结果,将其与长光程差分吸收光谱(LP-DOAS)系统测量 NO₂浓度的结果进 行对比,二者获得了较好的一致性。实验结果表明,CRDS技术可实现大气中 NO₂高灵敏度、高时间分辨率的在线探测。 关键词 光谱学;腔衰荡光谱技术;二氧化氮;二极管激光

中图分类号 0433 文献标识码 A doi: 10.3788/AOS201636.0230006

Diode Laser Cavity Ring-Down Spectroscopy for Atmospheric NO₂ Measurement

Hu Renzhi¹ Wang Dan¹ Xie Pinhua^{1,2} Chen Hao¹ Ling Liuyi^{1,3}

¹Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China

²School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, China

³School of Electric and Information Technology, Anhui University of Science and Technology, Huainan, Anhui 232001, China

Abstract Diode laser cavity ring-down spectroscopy (CRDS) for the measurement of NO₂ concentration (volume fraction, hereinafter the same) in the atmosphere is presented. The output spectrum of the diode laser is optimized by changing the external modulation signal. The effective cross-section of NO₂ is a convolution of the high-resolution absorption cross-section and the laser spectrum. The interference of O₃, water vapor and other gases has also been investigated. The limit of detection is 6.6×10^{-11} for NO₂ at 1 s time resolution. The 1σ accuracy of the measurement is ±4.5%, with the largest uncertainty being the effective NO₂ absorption cross-section and $R_{\rm L}$ (ratio of ring down cavity length and single absorption optical path of the gas in cavity). Comparison of this system to the incoherent broad-band cavity-enhanced absorption spectroscopy (IBB-CEAS) instrument for NO₂ concentration measurement shows linear agreement (R^2 =0.99) with slope of 0.988±0.005 in laboratory. The system is employed to measure the ambient NO₂. The NO₂ concentration varies from 1×10⁻⁸ to 5×10⁻⁸ with an average level of 3.5×10⁻⁸. To verify the results of the CRDS instrument, a long path differential optical absorption spectroscopy (LP-DOAS)

收稿日期: 2015-09-27; 收到修改稿日期: 2015-11-07

基金项目:国家自然科学基金(61575206,61108031)、中国科学院战略性先导科技专项(B类)(XDB05040200)、安徽省自然科学基金(1408085QD75)

作者简介: 胡仁志(1982—), 男, 博士, 副研究员, 主要从事环境光谱探测技术方面的研究。E-mail: rzhu@aiofm.ac.cn

光学学报

system is used to measure ambient NO_2 simultaneously. The data sets for NO_2 exhibit high correlation and good agreement within the combined accuracy of the two methods. Linear fits show a slope of 1.051 ± 0.006 in ambient air. The experimental results show that the diode laser cavity ring-down spectroscopy can realize high sensitivity and high temporal resolution *in situ* detection of NO_2 in the atmosphere.

Key words spectroscopy; cavity ring-down spectroscopy; nitrogen dioxide; diode laser **OCIS codes** 300.1030; 300.6550; 300.6470; 120.6200

1 引 言

氮氧化物(NO₄:NO₅NO₂)是大气中重要的痕量气体,在大气化学中扮演着重要的角色,主要来自自然源和人工源排放。NO₂通过直接参与大气中O₃、HONO(大气中OH自由基的主要来源)、其他大气氧化剂(如NO₃自由基)的形成,影响大气的氧化能力;同时也是酸雨、光化学烟雾等污染的主要来源。典型的大气NO₂浓度从偏远地区的10⁻¹⁰到重污染地区的10⁻⁷不等^[1]。

鉴于在大气化学和空气质量方面的重要作用,多种直接和间接技术被应用于实验室和环境大气中NO2 浓度(体积分数,下同)的测量。间接技术如化学发光法,将NO2通过钼转化炉(300℃~350℃)或光解的方法转 换为NO,NO与O3反应生成激发态的NO2(NO2*),检测NO2*发光强度即可获得NO2的浓度,化学发光法的探测 限约为5×10⁻¹¹ (2 min)¹²⁻⁴¹。直接技术如差分吸收光谱技术(DOAS)¹⁵⁻⁶¹、激光诱导荧光技术¹⁷⁻⁸¹、可调谐半导体激 光吸收光谱技术^[9-11],一般探测限分别为6.1×10⁻¹⁰ (3 min)^[5]、1.5×10⁻¹¹ (10 s)^[8]、2.5×10⁻¹¹ (3 min)^[9]。近十年来,基 于高反腔的测量技术,如腔衰减相移光谱技术(CAPS)、腔增强光谱技术(CEAS)及腔衰荡光谱技术(CRDS)开始 应用于 NO₂的测量。Kebabian 等^{1/2}采用 430 nm LED 为光源开展 CAPS 技术研究 NO₂的测量,探测灵敏度达到 3×10⁻¹⁰ (10 s); Dhiman 等¹¹³研究了 405 nm 激光二极管为光源的腔衰减相移光谱技术,实现 10⁻⁶量级的 NO₂测 量。Langridge等¹¹⁴通过LED阵列提高光强,通过宽带腔增强技术(BBCEAS)在441~462 nm范围内测量NO₂的 吸收光谱,在60s的时间分辨率下,探测灵敏度为1×10⁻¹⁰;本课题组Ling等¹¹⁵以蓝光LED为光源,研究 BBCEAS技术测量大气中的 NO2,在 20 s光谱采集时间内,探测灵敏度达到了 2×10⁻¹⁰; Dong 等^[16]也采用蓝光 LED 作为光源,开展非相干宽带腔增强(IBB-CEAS)吸收光谱系统的研究,实现探测限1.87×10⁻¹⁰ (3 s);Wu等^[17] 选用 365 nm LED 为光源,实现 BBCEAS 技术同时测量香港大气中的 HONO 和 NO2浓度,探测限分别为 6×10⁻¹⁰ 和 2×10⁻⁹ (120 s)。Wada 等^[18]采用连续波腔衰荡光谱(CW-CRDS)在 410 nm 处测量环境空气中的 NO₂浓度,探 测限为1×10⁻¹⁰ (50 s)。Osthoff 等^[19]以YAG激光器为光源,采用脉冲腔衰荡光谱技术在532 nm 处测量了大气 中的NO₂浓度,探测限为4×10⁻¹¹(1s)。环境大气的外场观测现在主要采用的是商业化化学发光法(CL)NO₂分 析仪,但由于传统的钼催化容易受其他氮氧化物(HNO3、过氧乙酰硝酸脂PAN等)的影响,使得测量的NO2浓 度偏高。Steinbacher等^[20]研究了化学发光法测量NO₂浓度,通过钼催化和光解两种转化方式对比,认为瑞士 农村地区钼转化法测量NO2浓度存在17%~30%的误差;Ge等四通过CL和CAPS两种技术同时测量北京大气 的 NO₂浓度变化,发现测量结果最大偏差达 25%,并分析了其对计算臭氧生成效率的影响。

大气NO₂浓度的准确测量不仅可以有效提高对NO₄排放源的反演^[22-23],同时还有助于深入了解对流层光 化学污染的形成机理。本文采用外部调制的二极管激光器作为光源,建立基于CRDS技术的紧凑型NO₂测 量系统,探究可能存在的测量干扰,获得系统的探测限。该系统被应用于环境大气中NO₂浓度的实际测量, 并将测量结果与DOAS系统的测量结果进行对比。

2 CRDS测量原理和实验系统

2.1 CRDS测量原理

CRDS测量原理^[24-25]主要是分析光在衰荡腔内多次反射的衰荡时间来获得腔内待测气体的浓度信息。 腔内待测气体的浓度公式为

$$C_{\Lambda} = \frac{R_{\rm L}}{c\sigma} \left(\frac{1}{\tau} - \frac{1}{\tau_0} \right) \,, \tag{1}$$

式中 C_A 和 σ 分别为气体A的浓度和吸收截面,c为光速, R_L 为衰荡腔长与腔内气体单次吸收光程长的比值;

 τ_0 为本底衰荡时间(无待测气体A时); τ 为衰荡时间(含待测气体A)。当已知NO₂气体吸收截面时,通过系统测得 τ 和 τ_0 ,即可计算出NO₂气体的浓度。

2.2 实验系统

CRDS实验系统主要由二极管激光器光源、高反腔和高灵敏度数据采集与处理系统组成。自行设计的时序控制单元产生0~1V的高频方波信号(1000 Hz、占空比为50%)调制连续光二极管激光器,使其脉冲输出(激光关闭响应时间小于1µs)作为腔衰荡系统的光源。为了减小壁碰撞效应的影响,采用PFA(四氟乙烯-全氟烷氧基乙烯基醚共聚物)管组成高反腔(腔长为750 mm,高反镜反射率为99.995%)和进气单元。为了减 小高反镜的污染,通过高纯N₂吹扫镜片来确保系统的稳定性。调制的脉冲激光进入高反腔后,输出的光信 号经过一个合适的窄带滤光片(中心波长为405 nm,半峰全宽为10 nm)后由光电倍增管(PMT,10721-20,滨 松,日本)接收,转化为电信号通过LabVIEW控制的NI采集卡(2 MHz)采集,在计算机上对信号平均、拟合,获 得衰荡时间。时序控制单元产生控制信号调制进气单元,分别采集环境大气和零空气,实现衰荡时间和本 底衰荡时间的测量。根据(1)式可计算NO₂的实时浓度。

图 1 CRDS-NO2系统示意图 Fig.1 Schematic diagram of CRDS-NO2 system

3 实验结果与讨论

3.1 NO₂的有效吸收截面

确定 NO₂的有效吸收截面对准确获得 NO₂的浓度至关重要,将 NO₂的高分辨吸收截面与激光光谱卷积获 得系统的有效吸收截面。NO₂和 H₂O 的吸收截面如图 2 所示,从 HITRAN 数据库获得的水蒸气吸收光谱^[26] (图 2 粉红线)显示在 402~415 nm之间 H₂O 都是没有吸收的,激光波长需选择在这个范围内以避免 H₂O 的吸收 干扰。图 2 中红线给出该系统激光的光谱[由光栅光谱仪(SR 303 i, Andor)测得],中心波长为 409.05 nm,半峰 全宽为 0.65 nm,功率约为 80 mW;图 2 中蓝线是 NO₂的吸收截面^[27],考虑到激光器的线宽为 0.65 nm,远大于 NO₂分子单个吸收线的线宽,将 NO₂的吸收截面与 409 nm 激光光谱卷积获得系统的有效吸收截面,为 6.2×10⁻¹⁹ cm²/molecule。由图 2 可以看出,激光波长的变化会导致 NO₂有效吸收截面的变化,影响系统的测

0230006-3

量准确性;通过高分辨率光谱仪(2061DP, McPherson,分辨率为3.3 pm)连续8h测量二极管激光器输出波长 (环境温度变化为10℃),激光波长稳定,没有发生变化。

3.2 衰荡时间的确定

本底衰荡时间的准确测量对提高CRDS技术的测量灵敏度十分关键,该系统中首先要获得去除NO₂的零空气。为了简化装置,自行设计了一个NO₂去除器,经不同浓度NO₂样气测试,能基本去除NO₂(去除比例大于99%)。实际的环境空气经过NO₂去除器后再进入高反腔可测得系统的本底衰荡时间。

系统的衰荡信号如图 3 所示,测量实验室零空气时(无 NO₂气体)获得的是系统的本底衰荡时间(图中黑色 空心方形),通过拟合^[28]可知系统本底衰荡时间为(33.45±0.01) μs;直接测量实验室空气获得系统的衰荡时间 (红色空心圆形)为(20.46±0.01) μs。衰荡信号具有单指数衰减特性,说明激光线宽满足实验要求。拟合的残 差如图 3 中插图所示,显示了信号的噪声水平。

图 3 衰荡信号及其单指数拟合示意图 Fig.3 Cavity ring-down signal and fitting results

3.3 R_L值的准确测定

由于腔镜保护气与采样的相互干扰, R_{L} 值是随采样流速的变化而变化的,在不同的流速下, R_{L} 值需要实验室测量获得^[24]。由于NO₂样气的浓度有一定的误差,测量时通过IBB-CEAS系统^[29]实时监测NO₂的浓度。选择实际采样和腔镜保护气的速率分别为2.9 L/min和100 mL/min,通过NO₂样气稀释,该系统测量了 $1 \times 10^{-8} \sim 7 \times 10^{-8}$ 范围内不同浓度下的 $\tau 和 \tau_0$,通过(1)式可获得该系统的 R_{L} 值约为1.09。

3.4 测量干扰分析

CRDS系统测量痕量气体必须考虑是否有采样损耗的影响,例如气体壁碰撞的损耗。Fuchs等¹⁰⁰研究表明,没有发现NO₂气体在壁碰撞过程中有损耗;Kebabian等¹³¹研究认为过滤膜对NO₂的浓度测量也没有影响。可能的测量干扰主要来自于空气中除NO₂以外的其他痕量气体在409 nm处的吸收。最容易引起关注的是空气中的水蒸气和α-二羰基化合物。从已知的水蒸气吸收光谱可知水蒸气在409 nm处没有吸收¹²⁶¹,但由于水蒸气的散射截面比空气小(σ_{ai}=1.61×10⁻²⁶ cm²)¹³²¹,水蒸气浓度的改变对实际测量还是有一定的影响。Fuchs等¹³¹通过实验测量水蒸气在404 nm处的散射截面约为1.11×10⁻²⁶ cm²,水蒸气和零空气的散射截面相差 0.5×10⁻²⁶ cm²,由此可以确定水蒸气对实际测量的影响。例如,相对湿度为60%(22℃)时,水蒸气带来的干扰等同于1.5×10⁻¹⁰的NO₂。测量本底时,NO₂去除器对水蒸气浓度的影响很小,对10%~90%范围内不同浓度的水蒸气测试时发现,最多只有0.8%相对湿度被去除,即NO₂去除器引起的测量干扰只有2×10⁻¹²的NO₂,可忽略不计。由于水蒸气在空气中的浓度变化速率远小于CRDS系统本底测量的时间间隔(一般为5 min),可以通过本底测量来避免环境大气中湿度变化对NO₂测量的影响。

虽然臭氧在环境大气中浓度能够达到 10⁻⁸~10⁻⁷量级,但由于臭氧的吸收截面在 409 nm 处比 NO₂的吸收 截面小 2.3×10^{4[34]},如图 2 所示,不会干扰环境大气中 NO₂的测量。唯一可能引起测量干扰的是α-二羰基化 合物,主要是乙二醛和甲基乙二醛。这两种物质在 409 nm 的吸收截面比 NO₂的吸收截面小一个量级^[35]。乙 二醛主要是挥发性有机化合物的光氧化产物,在森林环境下,只有 2×10⁻¹⁰乙二醛被观测到^[36],在高污染环境 下最高浓度可达到 1.85×10^{-9[37]},比 NO₂的浓度约小一个量级。所以α-二羰基化合物引起的测量误差也比较 小,低于 1%。

3.5 系统探测限和测量误差

本底衰荡时间的大小及其稳定性决定了系统的探测限。系统探测限计算公式为

$$f_{\min} = \frac{R_{\rm L}}{c\sigma} \frac{(\tau_0 - \tau)_{\min}}{\tau_0^2} = \frac{R_{\rm L}}{c\sigma} \frac{\Delta\tau}{\tau_0^2} \cong \frac{R_{\rm L}}{c\sigma} \frac{\sqrt{2} \sigma(\tau_0)}{\tau_0^2} , \qquad (2)$$

式中 f_{\min} 为系统的 NO₂气体探测限, $\Delta \tau$ 为本底衰荡时间的稳定性, 一般定义为 $\sqrt{2}\sigma(\tau_0)^{1381}$, 该系统测量环境 大气 NO₂浓度时, 本底衰荡时间 τ_0 约为 33.45 μ s, τ_0 的标准偏差 $\sigma(\tau_0)$ 约为 0.03 μ s(时间分辨率为 1 s), R_L = 1.09, 吸收截面为 6.2 × 10⁻¹⁹ cm²·molecule⁻¹, 系统探测限 f_{\min} =6.6×10⁻¹¹。

考虑到 NO₂吸收截面的误差约为 3%³³¹, *R*₁值的测量误差约为 3%, 其他误差(压力、温度等)约为 1%, 系统的总测量误差约为±4.5%。

3.6 NO2气体实际测量

3.6.1 NO2样气测量对比

将已知浓度的 NO₂标气经多组分配气系统(ZTD-003,中国计量科学研究院)进行稀释配制,获得不同浓度的 NO₂标气(浓度为 10⁻⁹~10⁻⁸)。NO₂标气浓度受钢瓶吸附等影响,有一定的偏差。同时使用该系统和 IBB-CEAS系统^[15]测量 NO₂标气,测量结果如图 4(a)所示,两者具有很好的一致性,只是在 NO₂突变时,该系统的时间分辨率更高,更好地反映了变化的过程。图 4(b)是该系统和 IBB-CEAS系统测量样气 NO₂ 1 min 的浓度相关性,线性拟合结果显示,斜率为 0.988±0.005,相关系数达到 0.99。

图 4 (a) CRDS系统和 IBB-CEAS系统测得 NO₂样气浓度; (b) CRDS系统和 IBB-CEAS系统测量 NO₂样气结果对比 Fig.4 (a) Simultaneous measurement of NO₂ concentrations by CRDS and IBB-CEAS systems; (b) correlation between the NO₂ concentrations measured by CRDS and IBB-CEAS systems

3.6.2 环境大气中NO2的测量

该系统在合肥市科学岛综合实验楼6楼开展对环境大气中NO₂浓度的连续测量。系统进气速率为 2.9 L/min,选用1μm过滤膜过滤空气中的气溶胶。为了防止高反镜受气溶胶污染而导致反射率降低,采用 100 mL/min N₂进行吹扫。通过系统内设置的程序,实现每5 min自动测量本底衰荡时间;测量的衰荡时间通

图 5 (a) CRDS 系统和 LP-DOAS 系统测得的环境大气 NO₂浓度; (b) CRDS 系统和 LP-DOAS 系统 NO₂测量结果对比 Fig.5 (a) Simultaneous measurement of atmospheric NO₂ concentrations by CRDS and LP-DOAS systems; (b) correlation between the atmospheric NO₂ concentrations measured by CRDS and LP-DOAS systems

光学学报

过内部程序计算直接获得 NO₂浓度,测量结果如图 5 所示。NO₂浓度为 1×10^{-*}~5×10^{-*},平均值为 3.5×10^{-*}。为 了证实 CRDS 系统的测量结果,同时使用一台长光程差分吸收光谱(LP-DOAS)系统测量 NO₂浓度。LP-DOAS 系统也放在 6 楼,单向光程为 350 m,光谱分辨率为 0.2 nm,测量结果如图 5 所示。不同的是,CRDS 系统测量 的是采样点的浓度,而 LP-DOAS 系统测量的是 350 m 处的平均浓度。由图 5 可知,尽管 NO₂浓度变化比较剧 烈,但两套系统的测量结果具有较好的一致性。图 5(b)显示了 CRDS 系统和 LP-DOAS 系统测量 NO₂ 3 min 浓 度的相关性,对其进行线性拟合,斜率为 1.051±0.006,相关系数为 0.95。

4 结 论

主要介绍了采用腔衰荡方法测量大气 NO₂浓度的系统研究。分析了可能存在的干扰气体对实际测量的 影响,探讨了系统的探测限和测量误差,测量环境大气 NO₂浓度时,实际探测限为6.6×10⁻¹¹,时间分辨率为1s, 测量总误差为±4.5%。将 CRDS系统与 IBB-CEAS系统在实验室测量 NO₂样气的结果进行对比,发现测量结 果具有很好的一致性。将 CRDS系统应用于环境大气中 NO₂浓度的测量,并与 LP-DOAS系统的测量结果进 行对比,二者结果也具有较好的一致性。该系统测量简单、功耗低、灵敏度高、时间分辨率高且不受其他气 体干扰,为环境大气 NO₂高灵敏度和高时间分辨率的测量提供了一种新的方法。

参考文献

- 1 Meena G S, Jadhav D B. Study of diurnal and seasonal variation of atmospheric NO₂, O₃, H₂O and O₄ at Pune, India[J]. Atmosfera, 2007, 20(3): 271-287.
- 2 Gao R S, Keim E R, Woodbridge E L, *et al.*. New photolysis system for NO₂ measurements in the lower stratosphere[J]. Journal of Geophysical Research: Atmospheres, 1994, 99(D10): 20673 20681.
- 3 Dias-Lalcaca P, Brunner D, Imfeld W, *et al.*. An automated system for the measurement of nitrogen oxides and ozone concentrations from a passenger aircraft: Instrumentation and first results of the NOXAR project[J]. Environmental Science & Technology, 1998, 32(20): 3228-3236.
- 4 Ryerson T B, Williams E J, Fehsenfeld F C. An efficient photolysis system for fast-response NO₂ measurements[J]. Journal of Geophysical Research, 2000, 105(D21): 26447 –26461.
- 5 Lee J S, Kim Y J, Kuk B, *et al.*. Simultaneous measurements of atmospheric pollutants and visibility with a long-path DOAS system in urban areas[J]. Environmental Monitoring and Assessment, 2005, 104(1): 281-293.
- 6 Yu Minjie, Liu Minghui, Dong Zuoren, *et al.*. Study on measuring concentration of ammonia and sulphur dioxide by differential optical absorption spectrometry based on fast Fourier transform[J]. Chinese J Lasers, 2015, 42(9): 0915001. 郁敏捷, 刘铭晖, 董作人,等. 基于傅里叶变换的差分吸收光谱法测量 NH₃和SO₂浓度的实验研究[J]. 中国激光, 2015, 42(9): 0915001.
- 7 Thornton J A, Wooldridge P J, Cohen R C. Atmospheric NO₂: In situ laser-induced fluorescence detection at parts per trillion mixing ratios[J]. Analytical Chemistry, 2000, 72(3): 528-539.
- 8 Bradshaw J, Davis D, Crawford J, *et al.*. Photofragmentation two-photon laser-induced fluorescence detection of NO₂ and NO: Comparison of measurements with model results based on airborne observations during PEM-tropics A[J]. Geophysical Research Letters, 1999, 26 (4): 471-474.
- 9 Schiff H I, Karecki D R, Harris G W, *et al.*. A tunable diode laser system for aircraft measurements of trace gases[J]. Journal of Geophysical Research Atmospheres, 1990, 95(D7): 10147–10153.
- 10 Li Y Q, Demerjian K L, Zahniser M S, et al.. Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at Whiteface Mountain using a dual tunable diode laser system[J]. Journal of Geophysical Research Atmospheres, 2004, 109(D16): D16S08.
- 11 Yuan Song, Kan Ruifeng, He Yabai, *et al.*. Tunable diode laser spectroscopy system for carbon dioxide monitoring[J]. Chinese J Lasers, 2014, 41(12): 1208003.
 - 袁 松, 阚瑞峰, 何亚柏, 等. 基于可调谐半导体激光光谱大气 CO.监测仪[J]. 中国激光, 2014, 41(12): 1208003.
- 12 Kebabian P L, Herndon S C, Freedman A. Detection of nitrogen dioxide by cavity attenuated phase shift spectroscopy[J]. Analytical Chemistry, 2005, 77(2): 724-728.
- 13 Dhiman C, Khan M S, Reddy M N. Phase-shift cavity ring-down technique for detection of NO₂ in ppm concentration[J]. Defence Science Journal, 2014, 64(5): 426-430.

- 14 Lamgridge J M, Ball S M, Jones R L. A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO₂ using light emitting diodes[J]. Analyst, 2006, 131(8): 916-922.
- 15 Ling Liuyi, Xie Pinhua, Qin Min, *et al.*. Open-path incoherent broadband cavity enhanced absorption spectroscopy for measurements of atmospheric NO₂[J]. Acta Optica Sinica, 2013, 33(1): 0130002.

凌六一,谢品华,秦 敏,等.开放光路非相干宽带腔增强吸收光谱技术测量大气NO₂[J].光学学报,2013,33(1):0130002.

16 Dong Meili, Xu Xuezhe, Zhao Weixiong, et al.. High-sensitive trace detection of NO₂ with broadband cavity-enhanced spectroscopy[J]. Journal of Applied Optics, 2014, 35(2): 264–269.

董美丽,徐学哲,赵卫雄,等. NO2分子高灵敏度痕量探测技术研究[J]. 应用光学, 2014, 35(2): 264-269.

- 17 Wu T, Zha Q Z, Chen W D, et al.. Development and deployment of a cavity enhanced UV-LED spectrometer for measurements of atmospheric HONO and NO₂ in Hong Kong[J]. Atmospheric Environment, 2014, 95: 544-551.
- 18 Wada R, Orr-Ewing A J. Continuous wave cavity ring-down spectroscopy measurement of NO₂ mixing ratios in ambient air[J]. Analyst, 2005, 130(12): 1595-1600.
- 19 Osthoff H D, Brown S S, Ryerson T B, et al.. Measurement of atmospheric NO₂ by pulsed cavity ring-down spectroscopy[J]. Journal of Geophysical Research, 2006, 111(D12): D12305.
- 20 Steinbacher M, Zellweger C, Schwarzenbach B, et al.. Nitrogen oxide measurements at rural sites in switzerland: Bias of conventional measurement techniques[J]. Journal of Geophysical Research Atmospheres, 2007,112(D11): D11307.
- 21 Ge Baozhu, Wang Zifa, Sun Yele, *et al.*. Comparison between cavity attenuated phase shift spectroscopy (CAPS) and chemiluminescencebased (CL) instrument in NO₂ measurement in Beijing China[J]. Environmental Chemistry, 2014, 33(9): 1558-1565.
 葛宝珠, 王自发, 孙业乐, 等. 光谱法与传统荧光法测量北京大气 NO₂浓度及其对臭氧生成效率的影响[J]. 环境化学, 2014, 33 (9): 1558-1565.
- 22 Richter A, Burrows J P, Nuss H, *et al.*. Increase in tropospheric nitrogen dioxide over China observed from space[J]. Nature, 2005, 437 (7055): 129-132.
- 23 Martin R V, Sioris C E, Chance K, et al.. Evaluation of space-based constraints on global nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern North America[J]. Journal of Geophysical Research - Atmospheres, 2006, 111(D15): D15308.
- 24 Hu Renzhi, Wang Dan, Xie Pinhua, *et al.*. Diode laser cavity ring-down spectroscopy for atmospheric NO₃ radical measurement[J]. Acta Physica Sinica, 2014, 63(11): 110707.

胡仁志, 王 丹, 谢品华, 等. 二极管激光腔衰荡光谱测量大气 NO₃自由基[J]. 物理学报, 2014, 63(11): 110707.

- 25 Wang D, Hu R Z, Xie P H, *et al.*. Diode laser cavity ring-down spectroscopy for *in situ* measurement of NO₃ radical in ambient air[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2015, 166: 23-29.
- 26 Rothman L S, Gordon I E, Barber R J, et al.. HITEMP, the high-temperature molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2010, 111(15): 2139-2150.
- 27 Voigt S, Orphal J, Burrows J P. The temperature and pressure dependence of the absorption cross-sections of NO₂ in the 250-800 nm region measured by Fourier-transform spectroscopy[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 149(1-3): 1-7.
- 28 Wang Dan, Hu Renzhi, Xie Pinhua, et al.. Fast and accurate extraction of ring-down time in cavity ring-down spectroscopy[J]. Spectroscopy and Spectral Analysis, 2014, 34(10): 2845-2850.

王 丹, 胡仁志, 谢品华, 等. 腔衰荡光谱技术中衰荡时间的准确快速提取[J]. 光谱学与光谱分析, 2014, 34(10): 2845-2850.

29 Ling Liuyi, Qin Min, Xie Pinhua, *et al.*. Incoherent broadband cavity enhanced absorption spectroscopy for measurements of HONO and NO₂[J]. Acta Physica Sinica, 2012, 61(14): 140703. 凌六一,秦 敏,谢品华,等. 基于 LED 光源的非相干宽带腔增强吸收光谱技术探测 HONO 和 NO₃[J]. 物理学报, 2012, 61(14):

- 30 Fuchs H, Dube W P, Ciciora S J, *et al.*. Determination of inlet transmission and conversion efficiencies for *in situ* measurements of the nocturnal nitrogen oxides, NO₃, N₂O₅ and NO₂, via pulsed cavity ring-down spectroscopy[J]. Analytical Chemistry, 2008, 43(15): 6010–6017.
- 31 Kebabian P L, Wood E C, Herndon S C, *et al.* A practical alternative to chemiluminescence-based detection of nitrogen dioxide: Cavity attenuated phase shift spectroscopy[J]. Environmental Science & Technology, 2008, 42(16): 6040-6045.
- 32 Bodhaine B A, Wood N B, Dutton E G, et al.. On Rayleigh optical depth calculations[J]. Journal of Atmospheric and Oceanic Technology, 1999, 16(11): 1854–1861.

- 33 Fuchs H, Dube W P, Lerner B M, *et al.*. A sensitive and versatile detector for atmospheric NO₂ and NO_x based on blue diode laser cavity ring-down spectroscopy[J]. Environmental Science & Technology, 2009, 43(20): 7831-7836.
- 34 Serdyuchenko A, Gorshelev V, Weber M, *et al.*. High spectral resolution ozone absorption cross-sections Part 2: Temperature dependence [J]. Atmospheric Measurement Techniques, 2014, 7(2): 625–636.
- 35 Volkamer R, Spietz P, Burrows J, et al.. High-resolution absorption cross-section of glyoxal in the UV-vis and IR spectral ranges[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 172(1): 35-46.
- 36 Huisman A J, Hottle J R, Coens K L, *et al.*. Laser-induced phosphorescence for the *in situ* detection of glyoxal at part per trillion mixing ratios[J]. Analytical Chemistry, 2008, 80(15): 5884-5891.
- 37 Volkamer R, Molina L T, Molina M J, et al.. DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air[J]. Geophysical Research Letters, 2005, 32(8): L08806.
- 38 Brown S S, Stark H, Ravishankara A R. Cavity ring-down spectroscopy for atmospheric trace gas detection: Application to the nitrate radical (NO₃)[J]. Applied Physics B: Lasers and Optics, 2002, 75(2-3): 173-182.

栏目编辑:史 敏